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A bit about myself
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Modules designed to interact with an API

1. Load Python and the extra dependencies

2. Open a session

3. Do the API call

4. Wrap the result and send it back to Ansible

API client modules
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For every task, Ansible will

1. starts a new Python process on the target host

2. send the module and run it on target host

3. collect the result

How Ansible works
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Python start-up time is pretty good

$ time python -c "print('some Python')"

some Python

real    0m0.029s

user    0m0.023s

sys    0m0.006s

A new Python process per task
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VMware

$ time python -c "from pyVmomi import vim; print('some Python')"

some Python

 

real    0m0.138s

user    0m0.122s

sys    0m0.016s

But the modules import can slow it down
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Azure

$ time python -c "from azure.mgmt.compute import 

ComputeManagementClient; from azure.mgmt.rdbms.mariadb import 

MariaDBManagementClient; print('some Python')"

some Python

 

real    0m0.218s

user    0m0.195s

sys    0m0.021s

But the modules import can slow it down
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OpenStack

$ time python -c "import openstack; print('some Python')"

some Python

 

real    0m0.444s

user    0m0.378s

sys    0m0.038s

But the modules import can slow it down
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Each time a task runs, a Python process import the dependencies

● Only load the subset of dependencies that you really need

● Be cautious when you add a new import 

Module loading
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Before anything, the module need to open a session and authenticate 

itself

● ping will matter, e.g: if you're API endpoint is 200ms away

● the authentication itself may be slow because of the backend (e.g: 

LDAP or AD)

Session opening
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Ansible Module 
Turbo
How to speed up your modules start-up
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Concept

Give a way to reuse your Python objects, between tasks execution.

● libraries are loaded just once

● reuse the existing session

Ansible Module Turbo
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Prepare your 
environment



Ansible Module Turbo is part of the cloud.common collection

ansible-galaxy collection install cloud.common

Fetch the new dependency
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Add a dependency on the cloud.common collection in galaxy.yml

namespace: vmware

name: vmware_rest

readme: README.md

authors:

- Ansible (https://github.com/ansible)

description:

license_file: LICENSE

tags: ["cloud", "vmware", "virtualization"]

dependencies:

  cloud.common: '*'

Adjust your collection metadata 
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turbo.demo is a demo module for the ansible_module.turbo. Use it to validate 

your installation:

- hosts: localhost

  gather_facts: false

  tasks:

- cloud.common.turbo_demo:

    with_sequence: count=10

Good enough for a first test run (1/2)
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During the playbook execution

● the Python keeps the same PID

● the counter is increased after every execution

When the playbook is restarted

● it still runs with the same PID

● the counter continue to increase

https://asciinema.org/a/358962

Good enough for a first test run (2/2)
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An example with the os_keypair module, the playbook runs the module 6 times.

● first time is slow >3s

● next 5 calls are below 0.6s

https://asciinema.org/a/345197

Example
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Adjust your module



And adjust your modules, to load the alternative AnsibleModule

from ansible.module_utils.basic import AnsibleModule

from

ansible_collections.cloud.common.plugins.module_utils.turb

o.module import AnsibleTurboModule as AnsibleModule

Tune up your module (1/3)
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Identify where to add a cache

For instance, this function returns a new client:

import MySDK

def my_slow_function():

return my_sdk.Client()

Tune up your module (2/3)
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You can cache a function result with a simple Python construction:

def my_slow_function():

if my_slow_function.i:

return my_slow_function.i❶

my_sdk = importlib.import_module("MySDK")❷

my_slow_function.i = my_sdk.Client()❸

return my_slow_function.i

my_slow_function.i = None❹

note: You can also use a library like async_lru.

Tune up your module (3/3)
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1. install cloud.common
2. load AnsibleTurboModule instead of AnsibleModule
3. delay the import
4. cache the session

To summarize
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Under the hood



Ansible Module Turbo starts a local process and delegate all the operation to it.

It uses Python's asyncio internally:

● Python 3.6+

● you can also use asyncio coroutine in your module

The daemon kills itself after 15s with no activity.

How it works?

25



Conclusion
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Good way to speed up your module if

● it depends on a large SDK

● the initial session creation is slow

Easy to switch to Ansible Module Turbo

● limited amount of code to adjust

● keep in minds it depends on Python3.6
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you

youtube.com/user/RedHatVideos linkedin.com/company/Red-Hat

facebook.com/ansibleautomation twitter.com/ansible


