How to speed up your
(API client) modules

Gonéri Le Bouder
Senior Software Engineer

A bit about myself

Work with the Ansible Cloud team, with a focus on VMware technologies.

@goneri on GitHub

AnsibleFest

API client modules

Modules designed to interact with an API

—_

HowN

Load Python and the extra dependencies
Open a session

Do the API call

Wrap the result and send it back to Ansible

How Ansible works

For every task, Ansible will
1. starts a new Python process on the target host
2. send the module and run it on target host

3. collect the result

A new Python process per task

Python start-up time is pretty good
$ time python -c "print(‘'some Python')"

some Python

real OmO0.029s
user OmO0.023s
sys Om0.006s

But the modules import can slow it down

VMware

$ time python -c "from pyVmomi import vim; print('some Python")"

some Python

real OmO.138s
user OmO0.122s
sys OmO0.016s

But the modules import can slow it down

Azure

$ time python -c "from azure.mgmt.compute import
ComputeManagementClient; from azure.mgmt.rdbms.mariadb import
MariaDBManagementClient; print(‘'some Python")"

some Python

real OmO.218s
user OmO.195s
sys 0OmO0.021s

But the modules import can slow it down

OpenStack
$ time python -c "import openstack; print(‘'some Python")"

some Python
real OmO0.444s

user 0OmO0.378s
sys Om0.038s

AnsibleFest

Module loading

Each time a task runs, a Python process import the dependencies
e Onlyload the subset of dependencies that you really need

e Be cautious when you add a new import

AnsibleFest

Session opening

Before anything, the module need to open a session and authenticate
itself

e ping will matter, e.g: if you're APl endpoint is 200ms away

e the authentication itself may be slow because of the backend (e.g:

LDAP or AD)

Ansible Module
Turbo

How to speed up your modules start-up

A AnsibleFest

Ansible Module Turbo

Concept
Give a way to reuse your Python objects, between tasks execution.
e libraries are loaded just once

e reuse the existing session

Prepare your
environment

Fetch the new dependency

Ansible Module Turbo is part of the cloud.common collection

ansible-galaxy collection install cloud.common

Adjust your collection metadata

Add a dependency on the cloud.common collection in galaxy.yml
namespace: vmware

name: vmware_rest

readme: README.md

authors:

- Ansible (https://github.com/ansible)

description:

license_file: LICENSE

tags: ["cloud", "vmware", "virtualization"]
dependencies:

cloud.common: 'x*!

AnsibleFest

Good enough for a first test run (1/2)

turbo.demo is a demo module for the ansible_moduleturbo. Use it to validate
your installation:
- hosts: localhost
gather_facts: false
tasks:
- cloud.common.turbo_demo:

with_sequence: count=10

Good enough for a first test run (2/2)

During the playbook execution

e the Python keeps the same PID

e the counter isincreased after every execution
When the playbook is restarted

e it still runs with the same PID

e the counter continue to increase

https://asciinema.org/a/358962

AnsibleFest

https://asciinema.org/a/358962

AnsibleFest

Example

An example with the os_keypair module, the playbook runs the module 6 times.
e first timeis slow >3s
e next5 calls are below 0.6s

https://asciinema.org/a/345197

https://asciinema.org/a/345197

Adjust your module

20

AnsibleFest

Tune up your module (1/3)

And adjust your modules, to load the alternative AnsibleModule

¢ e herte—tts bt . ArstbleModt]

from
ansible_collections.cloud.common.plugins.module_utils.turb

o.module import AnsibleTurboModule as AnsibleModule

21

AnsibleFest

Tune up your module (2/3)

Identify where to add a cache

For instance, this function returns a new client:
import MySDK

def my_slow_function():

return my_sdk.Client()

22

AnsibleFest

Tune up your module (3/3)

You can cache a function result with a simple Python construction:
def my_slow_function():
if my_slow_function.i:
return my_slow_function.i@
my_sdk = dimportlib.import_module("MySDK")®
my_slow_function.i = my_sdk.Client()®
return my_slow_function.i
my_slow_function.i = None@®

note: You can also use a library like async_lru.

23

AnsibleFest

HPWN -

To summarize

install cloud.common

load AnsibleTurboModule instead of AnsibleModule
delay the import

cache the session

Under the hood

25

AnsibleFest

How it works?

Ansible Module Turbo starts a local process and delegate all the operation to it.
It uses Python's asyncio internally:

e Python 3.6+

e you can also use asyncio coroutine in your module

The daemon kills itself after 15s with no activity.

Conclusion

A AnsibleFest c oo 0000000
®

Good way to speed up your module if
e it dependson alarge SDK

° the initial session creation is slow

Easy to switch to Ansible Module Turbo
e limited amount of code to adjust

e keepin minds it depends on Python3.6

27

AnsibleFest

Thank you

Red Hat is the world's leading provider of enterprise
open source software solutions. Award-winning
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

n youtube.com/user/RedHatVideos m linkedin.com/company/Red-Hat

9 facebook.com/ansibleautomation y twitter.com/ansible

' AnsibleFest

