
How to speed up your
(API client) modules

Gonéri Le Bouder

Senior Software Engineer

Work with the Ansible Cloud team, with a focus on VMware technologies.

@goneri on GitHub

A bit about myself

2

Modules designed to interact with an API

1. Load Python and the extra dependencies

2. Open a session

3. Do the API call

4. Wrap the result and send it back to Ansible

API client modules

3

For every task, Ansible will

1. starts a new Python process on the target host

2. send the module and run it on target host

3. collect the result

How Ansible works

4

Python start-up time is pretty good

$ time python -c "print('some Python')"

some Python

real 0m0.029s

user 0m0.023s

sys 0m0.006s

A new Python process per task

5

VMware

$ time python -c "from pyVmomi import vim; print('some Python')"

some Python

real 0m0.138s

user 0m0.122s

sys 0m0.016s

But the modules import can slow it down

6

Azure

$ time python -c "from azure.mgmt.compute import

ComputeManagementClient; from azure.mgmt.rdbms.mariadb import

MariaDBManagementClient; print('some Python')"

some Python

real 0m0.218s

user 0m0.195s

sys 0m0.021s

But the modules import can slow it down

7

OpenStack

$ time python -c "import openstack; print('some Python')"

some Python

real 0m0.444s

user 0m0.378s

sys 0m0.038s

But the modules import can slow it down

8

Each time a task runs, a Python process import the dependencies

● Only load the subset of dependencies that you really need

● Be cautious when you add a new import

Module loading

9

Before anything, the module need to open a session and authenticate

itself

● ping will matter, e.g: if you're API endpoint is 200ms away

● the authentication itself may be slow because of the backend (e.g:

LDAP or AD)

Session opening

10

Ansible Module
Turbo
How to speed up your modules start-up

11

Concept

Give a way to reuse your Python objects, between tasks execution.

● libraries are loaded just once

● reuse the existing session

Ansible Module Turbo

12

13

Prepare your
environment

Ansible Module Turbo is part of the cloud.common collection

ansible-galaxy collection install cloud.common

Fetch the new dependency

14

Add a dependency on the cloud.common collection in galaxy.yml

namespace: vmware

name: vmware_rest

readme: README.md

authors:

- Ansible (https://github.com/ansible)

description:

license_file: LICENSE

tags: ["cloud", "vmware", "virtualization"]

dependencies:

 cloud.common: '*'

Adjust your collection metadata

15

turbo.demo is a demo module for the ansible_module.turbo. Use it to validate

your installation:

- hosts: localhost

 gather_facts: false

 tasks:

- cloud.common.turbo_demo:

 with_sequence: count=10

Good enough for a first test run (1/2)

16

During the playbook execution

● the Python keeps the same PID

● the counter is increased after every execution

When the playbook is restarted

● it still runs with the same PID

● the counter continue to increase

https://asciinema.org/a/358962

Good enough for a first test run (2/2)

17

https://asciinema.org/a/358962

An example with the os_keypair module, the playbook runs the module 6 times.

● first time is slow >3s

● next 5 calls are below 0.6s

https://asciinema.org/a/345197

Example

18

https://asciinema.org/a/345197

19

Adjust your module

And adjust your modules, to load the alternative AnsibleModule

from ansible.module_utils.basic import AnsibleModule

from

ansible_collections.cloud.common.plugins.module_utils.turb

o.module import AnsibleTurboModule as AnsibleModule

Tune up your module (1/3)

20

Identify where to add a cache

For instance, this function returns a new client:

import MySDK

def my_slow_function():

return my_sdk.Client()

Tune up your module (2/3)

21

You can cache a function result with a simple Python construction:

def my_slow_function():

if my_slow_function.i:

return my_slow_function.i❶

my_sdk = importlib.import_module("MySDK")❷

my_slow_function.i = my_sdk.Client()❸

return my_slow_function.i

my_slow_function.i = None❹

note: You can also use a library like async_lru.

Tune up your module (3/3)

22

1. install cloud.common
2. load AnsibleTurboModule instead of AnsibleModule
3. delay the import
4. cache the session

To summarize

23

24

Under the hood

Ansible Module Turbo starts a local process and delegate all the operation to it.

It uses Python's asyncio internally:

● Python 3.6+

● you can also use asyncio coroutine in your module

The daemon kills itself after 15s with no activity.

How it works?

25

Conclusion

26

Good way to speed up your module if

● it depends on a large SDK

● the initial session creation is slow

Easy to switch to Ansible Module Turbo

● limited amount of code to adjust

● keep in minds it depends on Python3.6

27

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

youtube.com/user/RedHatVideos linkedin.com/company/Red-Hat

facebook.com/ansibleautomation twitter.com/ansible

